Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
PeerJ ; 10: e13680, 2022.
Article in English | MEDLINE | ID: covidwho-1924606

ABSTRACT

Background: The COVID-19 pandemic is still a global public health issue. Omicron, a SARS-CoV-2 B.1.1.529 variant, has raised concerns about transmission and vaccine effectiveness. Omicron currently has the greatest number of variantions. Methods: To gain a better understanding of the significance of these variations and the dynamics of the interaction between the Omicron spike (S) protein and its human host factor angiotensin-converting enzyme 2 (ACE2), triplicate 500 ns molecular dynamics simulations were run using the structure of the S protein's receptor-binding domain (RBD) in complex with ACE2. The interaction and binding energy, determined using the molecular mechanics-generalized Born surface area approach, were compared to the original SARS-CoV-2 and the B.1.617 variant. Results: Though mutations K417N and G496S in the S protein RBD disrupt interactions found in the original SARS-CoV-2 complex, mutations Q493R and N501Y introduce interactions not found in the original complex. Interaction at a key viral hotspot and hydrophobic contacts at ACE2's N-terminus were preserved, but intermolecular hydrogen bonds and polar contacts in the S-ACE2 interface were lower than in the original SARS-CoV-2 interface.

2.
Biomolecules ; 11(8)2021 08 20.
Article in English | MEDLINE | ID: covidwho-1367767

ABSTRACT

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has had a significant impact on people's daily lives. The rapidly spreading B.1.617 lineage harbors two key mutations-L452R and E484Q-in the receptor binding domain (RBD) of its spike (S) protein. To understand the impact and structural dynamics of the variations in the interface of S protein and its host factor, the human angiotensin-converting enzyme 2 (hACE2), triplicate 500 ns molecular dynamics simulations were performed using single (E484Q or L452R) and double (E484Q + L452R) mutant structures and compared to wild type simulations. Our results indicate that the E484Q mutation disrupts the conserved salt bridge formed between Lys31 of hACE2 and Glu484 of S protein. Additionally, E484Q, which could favor the up conformation of the RBD, may help in enhanced hACE2 binding and immune escape. L452R introduces a charged patch near the binding surface that permits increased electrostatic attraction between the proteins. An improved network of intramolecular interactions observed is likely to increase the stability of the S protein and conformational changes may prevent the binding of neutralizing antibodies. The results obtained from the molecular dynamics simulations suggest that structural and dynamic changes introduced by these variations enhance the affinity of the viral S protein to hACE2 and could form the basis for further studies.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Molecular Docking Simulation , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , Humans , Protein Binding , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
3.
Biomed J ; 44(3): 235-244, 2021 06.
Article in English | MEDLINE | ID: covidwho-1198634

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is one of the worst medical emergencies that has hit the world in almost a century. The virus has now spread to a large number of countries/territories and has caused over three million deaths. Evidently, the virus has been mutating and adapting during this period. Significant effort has been spent on identifying these variations and their impact on transmission, virulence and pathogenicity of SARS-CoV-2. Binding of the SARS-CoV-2 spike protein to the angiotensin converting enzyme 2 (ACE2) promotes cellular entry. Therefore, human ACE2 variations could also influence susceptibility or resistance to the virus. A deeper understanding of the evolution and genetic variations in SARS-CoV-2 as well as ACE2 could contribute to the development of effective treatment and preventive measures. Here, we review the literature on SARS-CoV-2 and ACE2 variations and their role in COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19 , SARS-CoV-2/genetics , COVID-19/genetics , Genetic Predisposition to Disease , Humans , Protein Binding , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL